

Risk Assessment & Phase II Plans

INTEGRATE Annual Meeting
18 September 2019

Overview

- How well are we addressing the technology risks?
- What new risks have been identified? How will we address them?
- What's next?
 - Phase I, Year 2 Risk Reduction Plan
 - Phase II Overview
 - Phase II Application Spaces

Risk Matrix

Risks being addressed by each team in Phase I

#	Risk	1	2	3	4	5	6	7	8	9
1	Engine Integration	X	X	X		x		x	x	
2	BOP Synergies		X	X		X	X	X	X	
3	Stack Durability		X	X	X	X				
4	Stack Specific Power (W/kg)		X	X	X	X			X	
5	Stack Manufact. Cost (\$/kg)				x	X				
6	Controls	Х	Х							X

Risk Reduction Plan (1 of 2)

Color-Coded STATUS UPDATE

Targeted risk progress during Year 1 of Phase I

#	Risk	Year 1 Milestones
1	Engine Integration	System designs completeLow energy content fuel engine operation
2	BOP Synergies	System designs completePower electronics design finalized
3	Stack Durability	
4	Stack Specific Power (W/kg)	Sub-scale pressurized stack testing completePressurized cell testing complete
5	Stack Manufact. Cost (\$/kg)	Full-scale pressurized stack designs complete
6	Controls	Steady-state control strategies developed

Risks to Ultimate Goal – 2019 Update

η >70% Eq. Cost (\$/W) <1 Maint (\$/kWh) <0.02

>100

P (kW)

1 Quad/year INTEGRATE-Enabled Primary Energy Savings

Risk	#
Engine Integration	1
BOP Synergies	2
Stack Durability	3
Stack Specific Power (W/kg)	4
Stack Manu. Cost (\$/kg)	5
Controls	6

		Almost Certain >90%					
		Likely 50% → 90%			3	3 2	
	Likelihood	Moderate 30% → 50%			5	2	
		Unlikely 10% → 30%				4 6	
		Rare <10%					
_			Insignificant	Minor	Moderate	Major	Catastrophic
			< 0.1	$0.1 \rightarrow 0.3$	0.3 → 0.5	$0.5 \rightarrow 0.9$	> 0.9
				Conse	equences (Qua	ds/yr)	

Key Risks Identified during Phase I, Year 1:

- Need pressurized stack testing facilities
- Need high temperature, low cost heat exchangers
 - Ideally ceramic or alumina-forming-alloy (AFA) metal
- Cr-poisoning of SOFC cathodes a significant durability risk

Risk Reduction Plan (2 of 2)

Targeted risk progress during Year 2 of Phase I

#	Risk	Year 2 Milestones
1	Engine Integration	 ICE operation on anode exhaust (UW, CSM, SUNY) SOFC-GT system design finalized (SG) O2 recovery demonstrated using O2 transport membrane (WSU)
2	BOP Synergies	 Elevated pressure reformer & hotbox testing completed (SG) Heat exchanger prototype manufactured & tested (ORNL) Power inverter development complete (CSM)
3	Stack Durability	 Full-scale stack testing for 100's of hours (CSM, SG, Nex, FCE) Sub-scale stack testing for 100's of hours (WSU)
4	Stack Specific Power (W/kg)	 Full-scale stack testing for 100's of hours (CSM, SG, Nex, FCE) Sub-scale stack testing for 100's of hours (WSU)
5	Stack Manufact. Cost (\$/kg)	
6	Controls	 Full transient control and operational strategies developed (NETL)

Phase II Plans

- Funding pitch to ARPA-E Leadership by end of 2019
 - Targeting ~\$30⁺ M program
- Full-scale (TRL 5) demonstrations of 3-4 systems
- ARPA-E interested in hybrid systems for the following application spaces:
 - Stationary Distributed Generation (original)
 - Transportation: Marine
 - Transportation: Aviation
- Teams that originally proposed a Phase II will need to submit an updated Phase II proposal
 - Adjustments to teaming and final product definition are allowed

